AI Agents Module

The AI Agents module is agnostic to the library used. The SDK will instrument existing AI agents in certain frameworks or libraries (at the time of writing those are openai-agents in Python and Vercel AI in Javascript). You may need to manually annotate spans for other libraries.

For your AI agents data to show up in the Sentry AI Agents Insights, a couple of different spans must be created and have well-defined names and data attributes. If the required data (marked with MUST or required) is missing, the data will not show up in the Agents dashbboard.

We try to follow v1.36.0 of the OpenTelemetry Semantic Conventions for Generative AI as close as possible. Being 100% compatible is not yet possible, because OpenTelemetry has "Span Events" which Sentry does not support. The input from/output to an AI model is stored in span events in OpenTelemetry. Since this is not possible in Sentry, we add this data onto span attributes as a list.

Describes AI agent invocation.

  • Span op MUST be "gen_ai.create_agent".
  • Span name SHOULD be "create_agent {gen_ai.agent.name}". (e.g. "create_agent Weather Agent")
  • Attribute gen_ai.operation.name MUST be "create_agent".
  • Attribute gen_ai.agent.name SHOULD be set to the agents name. (e.g. "Weather Agent")
  • All Common Span Attributes SHOULD be set (all required common attributes MUST be set).

Describes AI agent invocation.

  • Span op MUST be "gen_ai.invoke_agent".
  • Span name SHOULD be "invoke_agent {gen_ai.agent.name}". (e.g. "invoke_agent Weather Agent")
  • Attribute gen_ai.operation.name MUST be "invoke_agent".
  • Attribute gen_ai.agent.name SHOULD be set to the agents name. (e.g. "Weather Agent")
  • All Common Span Attributes SHOULD be set (all required common attributes MUST be set).

Additional attributes on the span:

AttributeTypeRequirement LevelDescriptionExample
gen_ai.request.messagesstringoptionalList of dictionaries describing the messages (prompts) given to the agent [0], [1]'[{"role": "system", "content": "..."}, ...]'
gen_ai.request.available_toolsstringoptionalList of dictionaries describing the available tools. [0]'[{"name": "random_number", "description": "..."}, ...]'
gen_ai.request.max_tokensintoptionalModel configuration parameter.500
gen_ai.request.frequency_penaltyfloatoptionalModel configuration parameter.0.5
gen_ai.request.presence_penaltyfloatoptionalModel configuration parameter.0.5
gen_ai.request.temperaturefloatoptionalModel configuration parameter.0.1
gen_ai.request.top_pfloatoptionalModel configuration parameter.0.7

AttributeTypeRequirement LevelDescriptionExample
gen_ai.response.textstringoptionalThe text representation of the agents response."The weather in Paris is rainy"
gen_ai.response.tool_callsstringoptionalThe tool calls in the model’s response. [0]'[{"name": "random_number", "type": "function_call", "arguments": "..."}]'

AttributeTypeRequirement LevelDescriptionExample
gen_ai.usage.input_tokensintoptionalThe number of tokens used in the AI input (prompt).10
gen_ai.usage.input_tokens.cachedintoptionalThe number of cached tokens used in the AI input (prompt)50
gen_ai.usage.output_tokensintoptionalThe number of tokens used in the AI response.100
gen_ai.usage.output_tokens.reasoningintoptionalThe number of tokens used for reasoning.30
gen_ai.usage.total_tokensintoptionalThe total number of tokens used to process the prompt. (input and output)190
  • [0]: Span attributes only allow primitive data types (like int, float, boolean, string). This means you need to use a stringified version of a list of dictionaries. Do NOT set the object/array [{"foo": "bar"}] but rather the string '[{"foo": "bar"}]' (must be parsable JSON).
  • [1]: Each message item uses the format {role:"", content:""}. The role must be "user", "assistant", "tool", or "system". For messages of the role tool, the content can be a string or an arbitrary object with information about the tool call. For other messages the content can be either a string or a list of dictionaries in the format {type: "text", text:"..."}.

This span represents a request to an AI model or service that generates a response or requests a tool call based on the input prompt.

  • Span op MUST be "gen_ai.{gen_ai.operation.name}". (e.g. "gen_ai.chat")
  • Span name SHOULD be {gen_ai.operation.name} {gen_ai.request.model}". (e.g. "chat o3-mini")
  • Attribute gen_ai.operation.name MUST be the operation performed.[3] (e.g. "chat".)
  • All Common Span Attributes SHOULD be set (all required common attributes MUST be set).

Additional attributes on the span:

AttributeTypeRequirement LevelDescriptionExample
gen_ai.request.messagesstringoptionalList of dictionaries describing the messages (prompts) sent to the LLM [0], [1]'[{"role": "system", "content": "..."}, ...]'
gen_ai.request.available_toolsstringoptionalList of dictionaries describing the available tools. [0]'[{"name": "random_number", "description": "..."}, ...]'
gen_ai.request.frequency_penaltyfloatoptionalModel configuration parameter.0.5
gen_ai.request.max_tokensintoptionalModel configuration parameter.500
gen_ai.request.presence_penaltyfloatoptionalModel configuration parameter.0.5
gen_ai.request.temperaturefloatoptionalModel configuration parameter.0.1
gen_ai.request.top_pfloatoptionalModel configuration parameter.0.7

AttributeTypeRequirement LevelDescriptionExample
gen_ai.response.textstringoptionalThe text representation of the model’s response. [0]"The weather in Paris is rainy"
gen_ai.response.tool_callsstringoptionalThe tool calls in the model’s response. [0]'[{"name": "random_number", "type": "function_call", "arguments": "..."}]'

AttributeTypeRequirement LevelDescriptionExample
gen_ai.usage.input_tokensintoptionalThe number of tokens used in the AI input (prompt).10
gen_ai.usage.input_tokens.cachedintoptionalThe number of cached tokens used in the AI input (prompt)50
gen_ai.usage.output_tokensintoptionalThe number of tokens used in the AI response.100
gen_ai.usage.output_tokens.reasoningintoptionalThe number of tokens used for reasoning.30
gen_ai.usage.total_tokensintoptionalThe total number of tokens used to process the prompt. (input and output)190
  • [0]: Span attributes only allow primitive data types (like int, float, boolean, string). This means you need to use a stringified version of a list of dictionaries. Do NOT set the object/array [{"foo": "bar"}] but rather the string '[{"foo": "bar"}]' (must be parsable JSON).
  • [1]: Each message item uses the format {role:"", content:""}. The role must be "user", "assistant", "tool", or "system". For messages of the role tool, the content can be a string or an arbitrary object with information about the tool call. For other messages the content can be either a string or a list of dictionaries in the format {type: "text", text:"..."}.

Describes a tool execution.

  • Span op MUST be "gen_ai.execute_tool".
  • Span name SHOULD be "execute_tool {gen_ai.tool.name}". (e.g. "execute_tool query_database")
  • Attribute gen_ai.operation.name MUST be "execute_tool".
  • Attribute gen_ai.tool.name SHOULD be set to the name of the tool. (e.g. "query_database")
  • All Common Span Attributes SHOULD be set (all required common attributes MUST be set).

Additional attributes on the span:

AttributeTypeRequirement LevelDescriptionExample
gen_ai.tool.namestringoptionalName of the tool executed."random_number"
gen_ai.tool.descriptionstringoptionalDescription of the tool executed."Tool returning a random number"
gen_ai.tool.typestringoptionalThe type of the tools."function"; "extension"; "datastore"
gen_ai.tool.inputstringoptionalInput that was given to the executed tool as string.'{"max":10}'
gen_ai.tool.outputstringoptionalThe output from the tool."7"

A span that describes the handoff from one agent to another agent.

  • Span op MUST be "gen_ai.handoff".
  • Span name SHOULD be "handoff from {from_agent} to {to_agent}".
  • All Common Span Attributes SHOULD be set (all required common attributes MUST be set).

Some attributes are common to all AI Agents spans:

AttributeTypeRequirement LevelDescriptionExample
gen_ai.operation.namestringrequiredThe name of the operation being performed. [2]"chat"
gen_ai.request.modelstringrequiredThe name of the AI model a request is being made to."gpt-4o"
gen_ai.response.modelstringoptionalThe name of the AI model the response was created with."gpt-4o-2024-08-06"
gen_ai.agent.namestringoptionalThe name of the agent this span belongs to."Weather Agent"
gen_ai.systemstringoptionalThe Generative AI product as identified by the client or server instrumentation. [3]"openai"

[2] Well defined values for data attribute gen_ai.operation.name:

ValueDescription
"chat"Chat completion operation such as OpenAI Chat API
"responses"OpenAI Responses API
"create_agent"Create GenAI agent
"embeddings"Embeddings operation such as OpenAI Create embeddings API
"execute_tool"Execute a tool
"generate_content"Multimodal content generation operation such as Gemini Generate Content
"invoke_agent"Invoke GenAI agent

[3] Well defined values for data attribute gen_ai.system:

ValueDescription
"anthropic"Anthropic
"aws.bedrock"AWS Bedrock
"az.ai.inference"Azure AI Inference
"az.ai.openai"Azure OpenAI
"cohere"Cohere
"deepseek"DeepSeek
"gcp.gemini"Gemini
"gcp.gen_ai"Any Google generative AI endpoint
"gcp.vertex_ai"Vertex AI
"groq"Groq
"ibm.watsonx.ai"IBM Watsonx AI
"mistral_ai"Mistral AI
"openai"OpenAI
"perplexity"Perplexity
"xai"xAI
Was this helpful?
Help improve this content
Our documentation is open source and available on GitHub. Your contributions are welcome, whether fixing a typo (drat!) or suggesting an update ("yeah, this would be better").